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An analytic approximation to the probability of error per bit for the Viterbi
maximum likelihood decoder of convolutional codes which employs an arbitrary
modem, is presented. The effect of limited path memory of the decoder on perform-
ance is determined. The method is applied in particular to the quantized binary
frequency-shift-keying modem. This may be useful for entry direct links.

l. Introduction

The performance of the Viterbi maximum likelihood
decoding algorithm at memory lengths where it is prac-
tical has been determined via digital simulation by Heller
and Jacobs (Ref. 1) and Layland (Ref. 2). The channels
that were assumed in these simulations consisted of the
Binary Symmetric Channel (BSC) and the additive white
Gaussian noise (AWGN) channel with a binary phase-
shift-keying (PSK) modem.

We determine the performance for the Viterbi decod-
ing algorithm with limited path memory and any encoder
memory length. We are motivated since there has as yet
been no analytic description of the effect of decoder mem-
ory size in the maximum likelihood decoder. This is
clearly an important design consideration and a param-
eter which cannot be arbitrarily chosen. In addition, one
clearly cannot build or simulate a decoder under all chan-
nel conditions and parameter settings.
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Although the derived performance applies to any
modem, emphasis is placed on the frequency-shift-keying
(FSK) modem. The FSK modem is applicable, for exam-
ple, in a descending atmospheric entry probe which is
communicating directly to Earth where it is doubtful that
a coherent RF reference phase can be maintained.

Expressions are derived which estimate the perform-
ance of a given time-invariant convolutional code for
which the decoder is assumed to implement the maximum
likelihood Viterbi algorithm. The results can be used to
carry out a system design since the trade-off between the
distance parameters of the code, the number and spacing
of the quantization levels, the type of modem, and the size
of the decoder memory can be analytically determined
from these expressions.

1Consultant from the University of Southern California for the
Communications Systems Research Section.
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Some of these variations are presented. For example,
the effect of the finite decoder memory is the addition of
a term in the expression of probability of error per bit
which decreases exponentially to zero as decoder mem-
ory size increases. This additional term is the dominant
contribution to the probability of error for small decoder
memory. The size of decoder memory at which the two
terms are of the same order of magnitude is dependent on
the distance parameters of the code and the signal-to-
noise ratio in the modem.

Of importance in the development of the expressions
for performance is an enumeration of all paths which have
merged with the correct path, whose path length is less
than or equal to the decoder memory. Also, an enumera-
tion of all paths which have not merged with the correct
path is required, whose path length is equal to that of the
decoder memory. These enumerations are determined via
transfer functions, from which approximations on the first
event error probability 3 and the probability of error per
bit are determined. These expressions are then applied to
the binary PSK and binary FSK modem.

Il. Transfer Functions for a Finite Memory
Decoder

Techniques to obtain bounds on the probability of first-
event error and probability of error per bit for maximum
likelihood decoding have been introduced and developed
by Viterbi (Ref. 3). In so doing, Viterbi introduced the
transfer function of the code to enumerate the lengths of
paths, the number of input ones corresponding to the
paths, and the weight of the paths leaving the all-zero
state and returning to the all-zero state at some later time.
In general, the transfer function, T (M, L, N) is a power
series whose ijkth terms is a;;;M*L/N¥, where a;j is the
number of paths that pass through the modified state dia-
gram in § branches with k input ones and with metric
or weight i. The use of the transfer function to deter-
mine upper bounds on the bit error probability over any
memoryless channel is presented in detail by Viterbi for
an infinite path memory, maximum likelihood decoder.

Suppose now that the decoder path memory is re-
stricted to some finite length /. To now enumerate all
paths which have merged with the all-zero state, again
let the exponent of the dummy variable L be equal to the
length of a path and the exponent of the dummy variable
N be equal to the number of input ones corresponding to
the path. For the moment we shall be concerned with the
transfer function T, (L, N), which is to be determined so
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as to enumerate all paths through the modified state dia-
gram up to length /.

There is one path that leaves the all-zero state and
returns after K + 1 input bits. This path is represented by
NLE+ gince the first input bit for the path is a one, fol-
lowed by K zeros. There is one path leaving the all-zero
state and returning after K + 2 input bits. This path is
represented by N2LX*2 gince it corresponds to two input
ones followed by K zeros. For K + 2= 0= 2K + 1, there
are 2¢-+) paths leaving the all-zero state and returning
after { input bits, These paths have an initial input one
corresponding to the path leaving the all-zero state, and
there is a final input one followed by K zero input digits,
so as to guarantee the return of the path to the all-zero
state in exactly { steps. The remaining / — (K + 2) input
bits can therefore be chosen arbitrarily with a distinct
path corresponding to each of these input sequences. The
transfer function of all paths which merge with the all-
zero state up to length /, for K+ 2=[=2K + 1, is
given by

T,(L,N) = NL&+ + N2Lx+
P (K+2)

X E 1+ N)i L}
K+2=01=2K+1 (1)

For [ > 2K + 1, some paths then contain a sequence of K
consecutive zero input bits among the { — (K + 2) input
bits so that the path would merge with the all-zero state
before { steps. To circumvent this, recall that the Viterbi
maximum likelihood decoding algorithm rejects paths
with low likelihood at the point where the path first
merges with the correct path. Therefore, if the all-zero
vector is considered to be the transmitted sequence, then
only paths that return to the all-zero state for the first time
at a given decoding step are considered. Let

N, j=1

jN = 2
#1(N) Nz(l+Ny=,  2=j=K+1 @

represent the enumeration of paths with information se-
quences of total length j + K, the last K input bits being
zero. As the information length is increased from j—1
to §, there are ¢;_, (N) paths for the added input being a
one and also the same for being a zero. Forj > K + 1 and
? > 2K + 1, however, some of the paths of length j which
result from the additional input bit being a zero will have
K consecutive zeros in the j — 2 input bits between the
initial input one and the final input one. These paths are
just the paths of length § with an initial input one followed
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by K zeros followed by a path of length j — (K + 1). The
final j — (K + 1) path segment necessarily begins with a
one. These paths that return to the all-zero state before
the end of the path therefore are enumerated by Ne;_ x.1)
and correspond to paths that must be eliminated when
enumerating all paths whose input sequence is of length
exactly equal to j + K through the modified state dia-
gram. Thus for j > K + 1, the following recursion rela-
tionship is obtained for ¢, (N):

¢ (N) =(L+ N) ¢, (N) — Noj_xa) (N), i>K+1

3)

The transfer function which enumerates all paths that
have merged with the all-zero sequence up to length ¢ is
thus given by

[V (%

T,(L,N)=L* 3 ¢;(N)L/, 1>K+1 (4)

In the special case where infinite memory is assumed,

{— o and the resulting transfer function can be expressed
in closed form via direct summation, namely,

NL& (1 — L)

AL
T(L,N) = lim T, (L, N) = 7= 7 N7 T NL=

f—> 0

This infinite memory transfer function has been given
previously by Viterbi (Ref. 3) using a different approach.

For finite path memory { input bits must be decoded
and released to the data user after { steps of decoding.
Therefore, assuming the all-zero vector was transmitted,
all paths leaving the all-zero state and not returning after
¢ input bits must be compared to determine if one of these
paths has a likelihood greater than the path with the larg-
est likelihood of all paths that have returned to the all-
zero state at the decoding time specified. We enumerate
these paths in a manner similar to that used to determine
T, (L,N). We need to determine the transfer function

Vi (L,N) = ¥, (N) L (5)

which enumerates all paths of length ¢ which leave the
all-zero state at the outset and have not returned after /
input bits. Direct observation yields the fact that ¥, (N) =
N,and #,(N)=NQQ +N)*, =2, - - - K In order to
be guaranteed that no path contains a sequence of K
zeros, ¥, (N) must satisfy the same recursion relationship
as ¢; (N) in Eq. (3), namely

‘I’l = (1 + N) Ty (N) - N‘I’]-(K_H) (N)
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for /=K + 1, where the initial condition ¥, (N) =1 is
needed to completely specify ¥; (N). The recursion rela-
tionship for both types of input sequences is the same, the
only difference being the sets of initial conditions.

Ill. Approximations to Probability of Error

Upper bounds on the probability of first event error and
probability of error per bit can be obtained by direct
application of the transfer functions in the previous sec-
tion. These bounds are rather poor bounds, however, pri-
marily due to the assumption that the distance between
paths is set equal to the minimum distance. This assump-
tion is quite gross, and produces tractable, but weak,
upper bounds.

For short code memory length K, the complete distance
structure of the code can be used to achieve tight upper
bounds. In order to retain the use of only simple distance
properties and improve the estimate of the probability of
error, the following approximations are made to the com-
plete distance structure of the code. To begin, consider
the truncation term V, (L, N) =¥, (N) L' described above.
One method to obtain an upper bound is to replace L' by
M4y, thereby replacing the distance in every path by a
uniform lower bound on the minimum distance. In the
above representation of the uniform lower bound, namely
dyl + d,, we have the following definitions:

The term / is the path length in branches, which in our
applications will be set equal to the path length corre-
sponding to the size of the decoder memory.

The term d, is the minimum average weight per branch
of the code. Upper and lower bounds on d, for binary
convolutional codes of rate 1/n are presented in Ref. 4.
For example, d, = 1/2 for rate 1/2 codes and d, =1
for rate 1/3 codes; these bounds are attainable by cer-
tain codes.

The term d, is a small bias. It represents an offset of the
minimum distance from uniform growth with path length.
The bias compensates for a concentration of weight over
the path from the all-zero state to the average weight per
branch cycle and compensates additionally for a concen-
tration of weight over any part of this cycle.

With this prelude, the approach to the approximation
is as follows. Various paths in the tree will have various
weights. We know that for any length /, the path of small-
est weight is lower bounded by d.! + d,. The path with
maximum weight is estimated by n{. We approximate all
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intermediate weight paths of length { by appropriate com-
binations of these two extreme weights as follows. Con-
sider first the path of length £ = 1. All paths into the modi-
fied state diagram begin with a one. We estimate the
weight of the path of length equal to one branch by the
transfer function A, (M, N), namely,

A (M, N) 2 NMiort; (6)

the N being present because all error sequences begin
with a one, and d, + d, estimates the weight in this first
branch. We equally well could have estimated the weight
in this first branch by n; the difference will be negligible
when long input sequences are considered. For { = 2, the
two possible input sequences are 11 and 10. We elect to
estimate the weight of the two § = 2 paths via the transfer
function

A, (M, N) = NMeot (NM? + M) M

In so doing, we assume that the added one in the 11 input
sequence produces a small weight increase, namely d,,
and that the added zero in the 10 sequence produces a
larger weight increase, which we estimate by n. When we
add the third digit, we reserve this assumption, so that

A, (M, N) = NM%*1 (NMd + M) (NM* + M) (8)
The idca is now established; in general, therefore,

A, (M,N) = NMd+t (NM% + Mm)fa-v/2
X (NM™ + Md)Lu-1/2] (9)

where the I 1notation indicates the greatest integer in the
enclosed expression and the L 1 notation, the smallest
integer.

This approach to averaging distances of all paths which
do not return to the all-zero state in ¢ branches involves
the same addition of extra paths as in the previous sec-
tion, since no attempt has been made to remove such
paths by use of the recursion relationship for ¥, (N).

For small decoder memory, there exist many more
non-return-to-zero paths than return-to-zero paths. The
truncation term A, (M, N) is therefore the dominant con-
tribution to the probability of error for small decoder
memory. For large decoder memory, the effect of de-
coder memory decreases exponentially to zero, so that the
B(M,N) term to be described below for the return-to-
zero paths becomes the dominant contribution to the
probability of error.
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By expanding A, (M, N) in a power series, we obtain

N=1
A; (M,N) =
Mk = Pk
[(e-1)/21 [0 —1)/2] W ) g — 1))
()
(10)
where

k=[d,+d@+i+j)+n(l—1—i—{] A1)

and where we have substituted Py, for M*. The probability
Py, is the probability of first event error between two merg-
ing paths which differ in k positions. For the approxima-
tion of probability of error per bit, we use the power
series

ANy | N7

oN ME=P,
[(1-1)/21 [‘(ﬁ . 1)/2‘| 1(e-1)/2] L(() _ 1)/2J
()
><<1+i~f+ﬂ;1>Pk (12)

where k is again given by Eq. (11). Equations (10) and
(12) provide the contribution to the probability of first
event error and probability of error per bit respectively
from all paths of length { which have not merged with
the all-zero state. The length ! is set equal to the size of
the decoder path memory.

Using similar techniques as used for the truncation
term, A, (M, N), we now estimate the portion of the prob-
ability of error which comes from the undetected error
term, which we designate as B, (M, N). First consider the
path of length / = K + 1. The minimum distance for this
path length is approximated by d;.... Therefore, we esti-
mate the weight of the path of length K + 1 by the trans-
fer function By, (M, N), namely,

BK+2 (M, N) —A_-'- NMdfree ~ NMdOT"'dl (13)
where [ is defined as follows. For a convolutional code

with minimum average weight per branch d,, bias d,, and
free distance d;..., there is a path length / such that all

117



paths through the modified state diagram with length
greater than [ have weight greater than or equal to di,..
This path length must satisfy d.e.=d,l + d,, so that
I=(dsse — ds)/d,. The smallest integer 7 which will sat-
isfy this requirement is therefore given by

= é dfree B dl
[t as

The weight of all paths of length < K + 2 which have
returned to the all-zero state, the number of input ones in
each path is given by

Br.s (M, N)~ NMdoT+d; 4 N2pn+doi-1)+dy

= NM%@-D+d (M% + NM™) (15)

where the path of length K + 2 resulting from two input
ones has one of the branches of weight n and the rest of
the branches of average weight d,. For { = K + 3, there
is one path resulting from two input ones and one path
resulting from three input ones. Thus,

Bi.s (M, N) = NMdo+dy 4 ON2Mn+do(T-1)+dy
+ N3M2n+d0(7—2)+d1 (16)
Br,s (M, N) = NMdG-2+dy (Mdo + NM")?

where a branch of weight n replaces a branch of weight
d, for each input one into the convolutional encoder after
the first one. Therefore, we are approximating all the
intermediate weight paths of length / by combinations of
the branch weights n and d,. Continuing this procedure,
for K+1=0=]+K+1,

B,(M,N) = NMdoQ+E+1-1)+d; (M% + NM»)-5-2 (17)

The representation for B, (M,N) in Eq. (17) enumer-
ates all paths of length less than or equal to £, when
K+1={=]+ K+ 1, which have departed from the
all-zero state at time zero, and returned at some time less
than that corresponding to ! branches. The reason for
approximating the weights of the various paths by
B,(M,N) in this manner is to force the approximation
to be such that the smallest weight path at each length /,
K+ 1={1=]+ K+ 1, be equal to d....

For # > [ + K + 1, we know that all paths through the modified state diagram have weight greater than di..., so that
the above restriction need no longer be imposed. We proceed, therefore, as with A, (M, N) so that

B,(M,N) = NM% (M% + NM»)' - [

1 (T+K+1)

(Mo + NMm)/2t (NMdo + N")W“] (18)

By expanding B, (M, N) in a power series as was similarly done for A,(M,N) in Eq. (10) and again making the

substitution M” = P,, we obtain

B, (M,N)

where

1-T-K-1 [(k+ﬂ)/2] [(k+l)/2j k+ﬂ/21 k+i)/2_|
LD DD Db D (R i

r=d,+di+§)+(k+1—i—fn (20)

For the approximation of probability of error per bit, we use the power series

3B, (M, N)
oN

where r is given by Eq. (20).
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1-T-K-1 [(k+D/21 {(k+T)/2) k+ﬂ /2]
IR D0 A G

Lk +0)/2]

. >(1 +i—i+[(k+10/2)P, (21)
1
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In summary, we have approximated the probability of
error per bit for a given convolutional code employing the
Viterbi maximum likelihood decoder with finite decoder
memory by

2A,(M,N) 3B, (M,N)7| N =1
P, = N + N (22)
Mr=P,
where
8A, (M,N)/oN
is given by Eq. (12) and
2B, (M, N)/oN

is given by Eq. (21). The first term in Eq. (22) represents
the contribution to the probability of error per bit due to
the fact the decoder has a finite memory, measured in
terms of the finite path length {. The second term repre-
sents the undetected error from paths with length less than
or equal to that of the decoder memory, which have
merged with the correct path. What remains is to evaluate
P, for the particular modem that is to be used, which is
considered in the next section.

IV. First Error Probability P, for Various
Quantized Channels

The approximations of the probability of error con-
sidered above apply to any memoryless channel. In the
present context, by channel we mean to include all pre-
liminary signal processing which may take place before
the data are given to the Viterbi maximum likelihood
sequence decoder.

The channel of primary interest is the AWGN channel
with Q-levels of quantization. A block diagram of the
demodulator for the pulse-code modulation (PCM)-PSK
biphase signal is shown in Fig. 1. Two different demodu-
lators of the PCM-binary FSK signal with quantization are
shown in Figs. 2 and 3. More will be said about these in
the following discussion.

For simplicity, we shall assume a binary-encoded signal.
Regardless of the modem used, the analog voltage of the
output of the matched filter, or the difference of the out-
puts of two envelope detectors, is assumed to be quantized
into Q equally spaced levels. This quantized output is
mapped via a metric, once under the assumption the trans-
mitted symbol represents a one, and once for a zero. The
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metric outputs w{} and w'? in Figs. 1-3 represent the
ith symbol in the jth branch under the assumption that a
0 and 1 were transmitted respectively.

The optimal map which minimizes the probability of
error is the log likelihood functional, for which w(® is

analog and is given by

w = log P (y;;|H.,), n=01 (23)
The evaluation of the error event probability Py is then
determined by considering two code sequences, x and «’,
which disagree in k symbols. Assume x is the correct se-

quence and is the all-zero sequence, so that x’ is one in
each of the specified k positions. Then

k

P;, = Prob { 2 [InP(y,|x;) — InP(y.|x,)] > 0} (24)

7=

if the optimal log likelihood functional is used. The sum-
mation in Eq. (24) is over the k symbols in which x and x’
disagree.

For ease of implementation, the log likelihood func-
tional is quantized and mapped into the set of integers
0, - - - ,Q — 1. When the quantization levels are assumed
to be equally spaced, extensive computation of the PSK
modem has demonstrated that the map is sufficiently
nonlinear, so that w{? is not a good approximation of
InP (y.|H,). The function that is the primary contributor
to P;, however, is the difference of log likelihood func-
tionals, as indicated in Eq. (24), for the Viterbi maximum
likelihood sequence decoder. The map of In P (y.|1)
—InP(y,|0) into wi¥ — w®, for the PSK modem, is
satisfactorily linear over an extensive range of equally
spaced quantization levels and ratios of signal energy to
noise spectral density, E,/N,. Examples are shown in
Figs. 4 and 5. In Fig. 4, with eight equally spaced levels
of 0.5, the linearity of the interior regions is almost perfect.
The only deviation is in the two extreme quantization bins
(— o0, —1.5) and (1.5, »), which increase in probability
as the signal-to-noise ratio E,/N, increases. In Fig. 5, this
becomes extensive when the size of the equal spacing is
decreased to 0.25. The linearity of the interior regions
predominates over all E,/N, and quantization spacings.

Because of this approximate linearity as well as the
simplicity which results from this approximation, most
implementations of the Viterbi decoder employ equally
spaced quantization levels and linear metrics. The exten-
sion to arbitrarily spaced bins is straightforward. For the
PSK modem, the relationships are as shown in Table 1.
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Table 1. Relationships for the PSK modem

Zij 0 1 2 0—-2 Q-1
w(y) 0 1 2 0—-2 Q-1
w®  9—-1 Q-2 Q-3 .- 1 0
We shall adopt the following notation:
Pw® =qlxy=1)=P, q=0---,0—1 (2a)
so that
P<w§§):qlxij:0>:PQ—l—l]3 q:O’...,Q__.l
(25b)

Since w® = Q — 1 — w'?, we have the result that

k

= Pmb{wa SHO-D ), 0} " (26)

r=1

for the quantized system.

Therefore, P; is equal to the probability that the sum of
discrete, identically distributed, statistically independent
random variables is greater than a threshold, where
each random variable can take on the integer values

0, --,0—1

V. Binary FSK Modem With Quantization

If the channel degrades the signal sufficiently so that
coherent tracking of the RF reference phase cannot be
satisfactorily maintained, an alternative is binary FSK.
This is anticipated to be the case in a descending atmo-
spheric entry probe where an RF reference phase may not
be adequately maintained. In this section the use of the
quantized FSK modem is described. Configurations are
suggested for the binary FSK modem, which are directly
extendable to multiple-frequency-shift keying (MFSK).

The optimal choice of M = 2% in MFSK from the point
of view of maximizing channel capacity or Reom, is given
by I. Bar-David and S. Butman (Ref. 4), where it is shown
that choosing M = 2 is not best at any signal-to-noise ratio.

The simplest way to implement a binary FSK demodu-
lator with Q-levels of quantization is shown in Fig. 2,
which we have called system A. The output of each
envelope detector is sampled at the end of each symbol
time. Perfect synchronization is assumed. Under the
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assumption, for example, that frequency f, was trans-
mitted over the channel during a given symbol time, the
probability density function (PDF) of r, in Fig. 2 will be
Rician distributed, and r, will be Rayleigh distributed.
These analog samples are differenced and quantized into
one of Q levels or bins. This output {z;;} is then mapped
into a metric under each of the two hypotheses. The
simplest metric is linear and the question immediately
arises as to how representative this metric is of the log

likelihood.

The envelope detectors are assumed to output 73 and 73
respectively, so that in system A,

A
y=yi;=r1i—13 27)

The envelope detector outputs are assumed to be appro-
priately normalized so that

1
p (ro) = roexp (— 3 7‘3> ,  Rayleigh, r,=0

and

p(r) =7 exp [— —;— (r; + 22 ] I, (Ary),

Rician, 7, =0
where \2 = 2E;/N,, E; = ST, being the symbol energy.

The cumulative density of y under the assumption that
H, is true can be shown to be

1 Moy
g CXP\" 4 "9 )>

1-0(nVy) —i—éexp ~£42—+—g—>
X Q(WV2,V2y),

where Q (a, 8) is the Marcum Q-function (Ref. 5).

yé()
F(y) =

y=0 (28)

As in PSK, we assume y is quantized with equally
spaced levels and the metric maps are linear as in Table 1.
How representative this metric is of the difference of log
likelihood functionals has been determined for binary
FSK using F(y) in Eq. (28). Examples are shown in
Figs. 6 and 7. Examination of the Rayleigh and Rician
PDFs indicates that a reasonable choice for the size of
equally spaced quantization interval is given by the point
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where the two PDFs intersect.? In the case Q = 8, two
equally spaced intervals are placed between the origin
and the point of intersection. For a given A2, the quantiza-
tion interval is then given by that A which satisfies

exp (A2/2) = I, (A Y QA/2), Q=8 (29)
In Fig. 6, the A corresponding to Eq. (29) was used. At
all signal-to-noise ratios considered, the difference of the
log likelihoods of the probability of being in a given
quantization region under H, and H, is quite linear, par-
ticularly at E./N, = 2 dB. Thus choosing the quantization
interval based on Eq. (29) is a satisfactory rule of thumb.
This assumes, of course, a priori knowledge of E,/N.,.
It is also reasonable to expect this choice of A to be very
close to that A which will maximize the capacity of the
quantized channel.

In Fig. 7, the quantization interval is fixed at A =1,
and the difference of the log likelihoods is shown for
different E./N,. It is noted that A =1 is too small a
quantization interval at E,/N, = 2 dB, so poor in fact that
the difference of the log likelihoods is no longer mono-
tonic. Also, binary FSK does not have the satisfying
property that is consistent with binary PSK, namely, of
being linear over the interior quantization regions over a
wide range of A and E,/N,.

In a given application, it is of much more importance to
have a priori knowledge of E;/N, when employing FSK
than when employing PSK, if linear metrics and equally
spaced quantization intervals are going to be representa-
tive of the log likelihood probabilities,

For a given E;/N, and A, the probability

pwi =qlx; =1),4=0,---,0-1
can be determined from F(y) in Eq. (28), and Py in
Eq. (26) is then determined as for binary PSK.

The above discussion applies to System A in Fig. 2. This
implementation, namely the differencing of the analog
envelope detection outputs before quantization, is easily
implemented only for binary FSK. Since there is signifi-
cant interest in MFSK because of its increased capacity
(Ref. 5) we consider System B in Fig. 3, which is directly
extendable to the M-ary case as shown in Fig. 8. With
System B, each envelope detector is sampled and imme-

2Suggested by B. Levitt, Communications Systems Research Sec-
tion, Jet Propulsion Laboratory.
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diately quantized before any signal processing is carried
out. In the binary case, the quantized outputs are linearly
indexed over 0, - - - ,Q — 1, and differenced, with the
result, designated as z;; in Fig. 3, mapped into each of the
two metrics w{} and w{}. Under the assumption fre-
quency f, was transmitted, hypothesis H,, the PDF of r,
and 7, are again Rician and Rayleigh respectively.

To determine if w{? and w(} are representative of the
log likelihood as is the case for the modems considered
above, we must consider the likelihood ratio of the quan-
tized received vector

A
z = (212)
The log likelihood ratio is given by

LL(z) £ WP |H,) + In P (x| H,)
—InP (Y |H) —InP(zp|Hy)  (30)

since r, and 7, are statistically independent random vari-
ables. Under H,, the cumulative probability function of

A
Yy =yis

Fy)=1—exp(—y/2) y=0 (31)

and y{¥ 2 has cumulative probability function
Fx)=1-Q(xVx), x=0 (32)
where again

A2/2 = E,/N, = ST,/N,

Since linear indexing is assumed as well as equally
spaced quantization z(? and z{?’ can take on the values
0, - -+ ,0 — 1, and z;; can take on the values

_(Q_S), e ,_1’0,1, PN ,Q_l
Computation has shown that the linear matrices
wi =z
(33)
wg‘;’ = —2Zij
are reasonably representative of the log likelihood. As
shown above, the primary random variable in determining

the performance of the Viterbi maximum likelihood se-
quence decoder is the difference of the log likelihood,
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namely LL (z) in Eq. (30), which we desire to be repre-
sented by w{ — w{?.

Sample calculations are shown in Fig. 9. The difference
of the log likelihood, LL (z), is plotted against w() — w{Y
for Q = 4 quantization regions at the output of each enve-
lope detector, and a quantization interval of A = 1.25. The
quantized outputs of each envelope detector are assigned
the values 0, 1, 2, 3 for each of the four regions respec-
tively. The difference can take on integral values over
[—3,3]. With the metric map in Eq. (33), this is identical
to w‘;j’ = w{9. For each of the 16 possible values of the
vector z, the difference of the log likelihoods versus
wfy — w!? is shown in Fig. 9 for E;/N, = 0dB and 1 dB.
Multiple values appear, since values of w() — w{ can be
obtained in several ways, each with its own value of
LL (z). The combination of A =125 and E,/N, = 0dB
corresponds to the choice given by Eq. (29). It appears

that this quantization procedure and choice of metrics is
representative of LL (z).

VI. Summary

A method is presented for determining an analytic ap-
proximation to the probability of error per bit for the
Viterbi maximum likelihood sequence decoder which
employs an arbitrary modem. The method is applied to
the quantized binary PSK modem, and two implementa-
tions of the quantized binary FSK modem. Simple linear
metrics are assumed and it is determined that they are
quite representative of the log likelihood, the purpose
being to demonstrate that implementation of a very simple
metric is close to the optimum for a given A and E,/N,.
If off-line decoding is to be performed, exact values of the
metric could easily be employed, as used for example in
the simulation carried out in Ref. 7.
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Fig. 1. PCM-PSK Biphase demodulator for the AWGN channel with Q-levels of quantization
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Fig. 2. PCM-binary FSK demodulator with Q-levels of quantization—System A
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Fig. 3. PCM-binary FSK demodulator with Q-levels of quantization—System B
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Fig. 4. Linearity of the difference of log likelihood with
equally spaced quantization and the PSK modem
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Fig. 9. Log likelihood ratio for System B, binary FSK, vs the
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